LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIFTH SEMESTER - NOVEMBER 2013

MT 5406 - COMBINATORICS

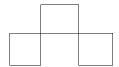
Date: 18/11/2013	Dept. No.	Max.: 100 Marks
Time: 9:00 - 12:00		

SECTION-A

ANSWER ALL THE QUESTIONS:

(10x2 = 20)

- 1. State exclusion principle.
- 2. Define Stirling number of second kind. 5%-
- 3. How many 7 letter words of binary digits are there?
- 4. In an examination a candidate has to pass in each of the five papers. How many different combinations of papers are there so that a student may fail?
- 5. Define recurrence relation.
- 6. Find the co-efficient of x^5 in (1 + x)(1 + 2x)(1 + 3x)(1 + 7x)(1 + 4x).
- 7. Find the Rook polynomial for the chess board C in the diagram below,



- 8. Define derangement.
- 9. Find $\Phi(100)$.
- 10. Define cycle index of a permutation group.

SECTION-B

ANSWER ANY **FIVE** QUESTIONS:

(5x8 = 40)

- 11. There are 30 females, 35 males in a junior class while there are 25 females and 20 males in the senior class. In how many ways can a committee of 10 be chosen so that there are exactly 5 females and 3 juniors in the committee?
- 12. Prove that the number of distributions of n distinct objects into m distinct boxes with the objects in each box arranged in a definite order is the rising factorial $[m]^n$.
- 13. Derive the Pascal's identity using the concept of generating functions.
- 14. (i) Define exponential generating function.
 - (ii) Find the number of r letter sequences that can be formed using the letters P, Q, R and S such that in each sequence, there are an odd number of P's and an even number of Q's.

(2+6)

- 15. State and prove Multinomial theorem.
- 16. Define permanent and find the permanent of the matrix $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{bmatrix}$. (2+6)
- 17. State and prove Burnside Frobenius theorem.
- 18. Describe the problem of Fibonacci with an illustration.

SECTION-C

ANSWER ANY TWO QUESTIONS

(2x20 = 40)

- 19. (i) Derive the recurrence formula for S_n^m . Formulate a table for S_5^5 .
 - (ii) If there exists a bijection between the set of n-letter words with distinct letters out of an alphabet of m letters and the set of n-tuples on m letters, without repetitions, then show that the cardinality of each of these sets is m(m-1)(m-2)...(m-n+1). (10 + 10)
- 20. (i) Prove that the element f of R[t] given by $f(t) = \sum_{k=0}^{\infty} a_k t^k$ has an inverse in R[t] if and only if α_0 has an inverse in R.
 - (ii) Determine the OGF of the sequence $\{(r+n-1)C_{(n-1)}\}, r \ge 0$ by differentiation of infinite geometric series. (10+10)
- 21. Find the elements of the group G of symmetries of a square. Enumerate the different types of colorings of the 4 vertices, if each vertex is to be either red or blue. Exhibit in a diagram the patterns. Also find Pattern Inventory of G.
- 22. State and solve Ménage problem.